安装飞桨paddle2.6.1+cuda11.7+paddleRS-develop开发版

安装飞桨paddle2.6.1+cuda11.7+paddleRS-develop开发版

安装飞桨paddle2.6.1+cuda11.7+paddleRS-develop开发版 安装时间:2024-8-30

#(一)查看环境 conda info --env conda env list

下载安装conda3 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=A

下载版本文件:Anaconda3-2024.06-1-Windows-x86_64.exe 下载安装到磁盘空闲空间要大的D:\ProgramData\Anaconda3 设置添加系统变量Path D:\ProgramData\Anaconda3 D:\ProgramData\Anaconda3\Scripts D:\ProgramData\Anaconda3\Library\bin D:\ProgramData\Anaconda3\Library\mingw-w64\bin

安装完后:python版本3.12.4 conda --version conda 24.7.1

#(二)创建paddleRS环境空间(python=3.9.13) #创建rs环境空间(python=3.9.13),会自动生成到目录中C:\Users\Administrator.conda\envs\rs conda create -n rs python=3.9.13 conda remove -n rs --all

conda activate rs conda deactivate

#测试用–创建cwgis环境空间(python=3.9.13),会自动生成到目录中C:\Users\Administrator.conda\envs\cwgis conda create -n cwgis python=3.9.13 conda remove -n cwgis --all

conda activate base conda activate cwgis conda deactivate

#也可自定义路径的cwgis环境空间 D:\ProgramData\anaconda3\envs conda create --prefix=D:\ProgramData\anaconda3\envs\cwgis python=3.9.13

下载CUDA11.7.1安装 测试是否cuda安装成功 nvcc -V 命令行输入检查该计算机适配的CUDA版本: nvidia-smi 下载CUDA的安装(开发者工具包)CUDA11.7.1并运行 https://developer.nvidia.com/cuda-toolkit-archive

cuda_11.7.1_516.94_windows.exe 安装后有目录:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7

系统path自动添加: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin

下载CUDNN的安装(8.9.4.25) https://developer.nvidia.com/rdp/cudnn-download https://developer.nvidia.com/rdp/cudnn-archive 必须注册账户登录后下载 cudnn-windows-x86_64-8.9.4.25_cuda11-archive.zip 将解压后得到的的bin ,include 和lib文件夹分别复制到cuda安装路径下与cuda的bin ,include 和lib文件夹合并 bin copy to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin include copy to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include lib copy to C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\lib

采用中科大源 conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/

#(三)安装飞桨paddlepaddle-gpu==2.6.1 cuda11.7 以管理员身份运行cmd.exe

conda env list conda init cmd.exe conda init powershell conda activate rs conda deactivate

#安装gpu版 conda install paddlepaddle-gpu==2.6.1 cudatoolkit=11.7 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ -c conda-forge

#安装cpu版 本地显卡不好就采用CPU版安装 conda install paddlepaddle==2.6.1 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/

conda list

#安装到目录中D:\ProgramData\anaconda3\pkgs

报错问题:无法加载文件 C:\Users\Administrator\Documents\WindowsPowerShell\profile.ps1 解决办法: 以管理员身份打开PowerShell 输入 Set-ExecutionPolicy -Scope CurrentUser set-executionpolicy remotesigned

(四)下载安装PaddleRS-develop平台开发版源代码 下载PaddleRS-develop 源代码 解压后目录 G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop

特别注意:#由develop 改为1.0.0 修改PaddleRS-develop/paddlers/.version = ‘1.0.0’ 或 修改PaddleRS-develop/paddlers/init.py/version = ‘1.0.0’

conda activate rs cd G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop

#搜索conda仓库上可用版本号

conda search numpy

1.21.0 1.21.6

1.22.0 1.22.4

1.23.0 1.23.5

1.24.0 1.24.4

1.25.0 1.25.2

1.26.0 1.26.4

2.0.0 2.0.2

2.1.0

conda search xarray

2024.7.0

2024.6.0

2024.5.0

2024.3.0

2024.2.0

2024.1.0 2024.1.1

2023.12.0

2023.11.0

需要提前安装的依赖包列表:

pip install scikit-learn==0.24.2 #安装成功OK

conda install gdal==3.4.0 #安装成功OK

conda install pillow==9.0.1 #安装成功OK

conda install numpy==1.22.0 #安装成功OK,测试安装没报问题ImportError: numpy.core.multiarray failed to import

conda install opencv==4.4.0 #安装成功OK 测试代码可用

conda install filterpy==1.4.5 #安装成功 OK

pip install opencv-contrib-python==4.4.0.46 #安装成功OK 选择与opencv4.4.0版本一致

conda install numpy==1.22.0 #再安装一次

pip install setuptools==68.0.0 #built lap时需要68.0.0版本才能编译通过,否则会报错如:74.0.0版本

pip install scikit-image==0.21.0 #需要降级到0.21.0 否则下面numpy==1.22.4安装兼容性报错

pip install numba==0.56.2

pip install pandas==2.0.3

conda install gdal==3.1.3

pip install xarray==2023.12.0

pip install numpy==1.22.4

报错问题:ERROR: Failed to build installable wheels for some pyproject.toml based projects (lap) 解决办法:

pip install setuptools==68.0.0

更新pip

python -m pip install --upgrade pip setuptools wheel

python -m pip install --upgrade pip

下载安装git #================================== 1.先安装git Git-2.38.0-64-bit.exe 2.再安装 TortoiseGit-2.13.0.1-64bit.msi 安装后配置git path

#安装PaddleRS-develop版本

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

#===========================================================

conda install numba==0.56.2

conda install numpy==1.21.6 #中间需要执行此句,否则会报错:ImportError: numpy._core.multiarray failed to import

pip install numba==0.56.2

pip install pandas==2.0.3

conda install gdal==3.1.3

pip install xarray==2023.12.0

pip install numpy==1.22.4 #conda list中显示为 numpy 2.0.2 pypi

#===========================================================

python setup.py install

(五) 测试安装情况代码一结果

(rs) PS G:\app2024\MyProject深度学习AI项目\web> & C:/Users/Administrator/.conda/envs/rs/python.exe g:/app2024/MyProject深度学习AI项目/web/test.py

2.6.1

Running verify PaddlePaddle program ...

I0829 17:55:25.061661 23132 program_interpreter.cc:212] New Executor is Running.

W0829 17:55:25.062655 23132 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.6, Runtime API Version: 11.7

I0829 17:55:26.218680 23132 interpreter_util.cc:624] Standalone Executor is Used.

PaddlePaddle works well on 1 GPU.

PaddlePaddle is installed successfully! Let's stconda --versionng with PaddlePaddle now.

# 查看 paddle能够调用 gpu

import paddle

print(paddle.__version__); #2.6.1

#paddle.fluid.is_compiled_with_cuda() #2.4.2版本

paddle.is_compiled_with_cuda(); #2.6.1版本

paddle.utils.run_check()

'''

特别注意:

在vscode中使用创建的虚拟环境

选择python的解释器:在vscode中按住快捷键Ctrl+shift+P,输入Python然后执行如下图:

Python:Select Interpreter

select D:\ProgramData\Anaconda3\python.exe

'''

测试安装情况代码二及结果:

(rs) PS G:\app2024\MyProject深度学习AI项目\web> & C:/Users/Administrator/.conda/envs/rs/python.exe g:/app2024/MyProject深度学习AI项目/web/MNIST_Good.py

10.4.0

2.6.1

视觉相关数据集: ['DatasetFolder', 'ImageFolder', 'MNIST', 'FashionMNIST', 'Flowers', 'Cifar10', 'Cifar100', 'VOC2012']

自然语言相关数据集: []

数据处理方法: ['BaseTransform', 'Compose', 'Resize', 'RandomResizedCrop', 'CenterCrop', 'RandomHorizontalFlip', 'RandomVerticalFlip', 'Transpose', 'Normalize', 'BrightnessTransform', 'SaturationTransform', 'ContrastTransform', 'HueTransform', 'ColorJitter', 'RandomCrop', 'Pad', 'RandomAffine', 'RandomRotation', 'RandomPerspective', 'Grayscale', 'ToTensor', 'RandomErasing', 'to_tensor', 'hflip', 'vflip', 'resize', 'pad', 'affine', 'rotate', 'perspective', 'to_grayscale', 'crop', 'center_crop', 'adjust_brightness', 'adjust_contrast', 'adjust_hue', 'normalize', 'erase']

g:\app2024\MyProject深度学习AI项目

训练数据集数量: 60000

第一个图片为 (28, 28) [5]

W0829 19:02:45.002585 17368 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 6.1, Driver API Version: 12.6, Runtime API Version: 11.7

W0829 19:02:45.008549 17368 gpu_resources.cc:164] device: 0, cuDNN Version: 8.4.

loading mnist dataset from ./train/mnist.json.gz ......

mnist dataset load done

训练数据集数量: 50000

epoch: 0, batch: 0, loss is: 2.789569139480591

epoch: 0, batch: 200, loss is: 0.09251288324594498

epoch: 0, batch: 400, loss is: 0.06473854184150696

epoch: 1, batch: 0, loss is: 0.1018374040722847

epoch: 1, batch: 200, loss is: 0.07876559346914291

epoch: 1, batch: 400, loss is: 0.03011542186141014

epoch: 2, batch: 0, loss is: 0.056242216378450394

epoch: 2, batch: 200, loss is: 0.03451666235923767

epoch: 2, batch: 400, loss is: 0.011802399531006813

epoch: 3, batch: 0, loss is: 0.025893133133649826

epoch: 3, batch: 200, loss is: 0.00430287653580308

epoch: 3, batch: 400, loss is: 0.010484364815056324

epoch: 4, batch: 0, loss is: 0.004997999407351017

epoch: 4, batch: 200, loss is: 0.0019390254747122526

epoch: 4, batch: 400, loss is: 0.08761590719223022

epoch: 5, batch: 0, loss is: 0.05072423815727234

epoch: 5, batch: 200, loss is: 0.07972753047943115

epoch: 5, batch: 400, loss is: 0.033000100404024124

epoch: 6, batch: 0, loss is: 0.014615577645599842

epoch: 6, batch: 200, loss is: 0.0034718234091997147

epoch: 6, batch: 400, loss is: 0.05304107815027237

epoch: 7, batch: 0, loss is: 0.013993428088724613

epoch: 7, batch: 200, loss is: 0.047364864498376846

epoch: 7, batch: 400, loss is: 0.006570461671799421

epoch: 8, batch: 0, loss is: 0.05435584858059883

epoch: 8, batch: 200, loss is: 0.003356481436640024

epoch: 8, batch: 400, loss is: 0.0032313629053533077

epoch: 9, batch: 0, loss is: 0.0165287796407938

epoch: 9, batch: 200, loss is: 9.04486223589629e-05

epoch: 9, batch: 400, loss is: 0.0011677269358187914

运行时间Cost time: 71.6329174041748

本次预测的数字是: 0

测试安装情况代码二:

#MNIST_Good.py

#数据处理部分之前的代码,加入部分数据处理的库

#需要安装:conda install matplotlib==3.5.0

import paddle

from paddle.nn import Conv2D, MaxPool2D, Linear

import paddle.nn.functional as F

import os

import sys

import gzip

import json

import random

import numpy as np

import matplotlib.pyplot as plt

# 导入图像读取第三方库

from PIL import Image,ImageFilter

print(Image.__version__) #10.4.0

#原来是在pillow的10.0.0版本中,ANTIALIAS方法被删除了,使用新的方法即可Image.LANCZOS

#或降级版本为9.5.0,安装pip install Pillow==9.5.0

print(paddle.__version__) #2.6.1

print('视觉相关数据集:', paddle.vision.datasets.__all__)

print('自然语言相关数据集:', paddle.text.datasets.__all__)

print('数据处理方法:', paddle.vision.transforms.__all__)

object_path = os.path.join(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))

print(object_path)

sys.path.append(object_path) #

import common

#data=json.load(open("./work/train-images-idx3-ubyte.gz"))

#print(len(data))

#获取训练集train_dataset

train_dataset = paddle.vision.datasets.MNIST(mode='train')

print('训练数据集数量:',len(train_dataset)) # 60000

#取第一张图片和标签=5

i=0

#for i in range(20):

train_data0 = np.array(train_dataset[i][0])

train_label_0 = np.array(train_dataset[i][1])

print('第一个图片为',train_data0.shape,train_label_0) #(28,28),5

'''

plt.figure("Image") # 图像窗口名称

plt.figure(figsize=(2,2))

plt.imshow(train_data0, cmap=plt.cm.binary)

plt.axis('on') # 关掉坐标轴为 off

plt.title('image') # 图像题目

plt.show()

def sigmoid(x):

# 直接返回sigmoid函数

return 1. / (1. + np.exp(-x))

# param:起点,终点,间距

x = np.arange(-8, 8, 0.2)

y = sigmoid(x)

plt.plot(x, y)

plt.show()

'''

#===========================================

def load_data(mode='train'):

datafile = './train/mnist.json.gz'

print('loading mnist dataset from {} ......'.format(datafile))

# 加载json数据文件

data = json.load(gzip.open(datafile))

print('mnist dataset load done')

# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS

IMG_ROWS = 28

IMG_COLS = 28

# 读取到的数据区分训练集,验证集,测试集

train_set, val_set, eval_set = data

if mode=='train':

# 获得训练数据集

imgs, labels = train_set[0], train_set[1]

elif mode=='valid':

# 获得验证数据集

imgs, labels = val_set[0], val_set[1]

elif mode=='eval':

# 获得测试数据集

imgs, labels = eval_set[0], eval_set[1]

else:

raise Exception("mode can only be one of ['train', 'valid', 'eval']")

print("训练数据集数量: ", len(imgs))

# 校验数据

imgs_length = len(imgs)

assert len(imgs) == len(labels), \

"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(labels))

# 获得数据集长度

imgs_length = len(imgs)

# 定义数据集每个数据的序号,根据序号读取数据

index_list = list(range(imgs_length))

# 读入数据时用到的批次大小

BATCHSIZE = 100

# 定义数据生成器

def data_generator():

if mode == 'train':

# 训练模式下打乱数据

random.shuffle(index_list)

imgs_list = []

labels_list = []

for i in index_list:

# 将数据处理成希望的类型

img = np.array(imgs[i]).astype('float32')

label = np.array(labels[i]).astype('float32')

# 在使用卷积神经网络结构时,uncomment 下面两行代码

img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')

#label = np.reshape(labels[i], [1]).astype('float32')

label = np.reshape(labels[i], [1]).astype('int64')

imgs_list.append(img)

labels_list.append(label)

if len(imgs_list) == BATCHSIZE:

# 获得一个batchsize的数据,并返回

yield np.array(imgs_list), np.array(labels_list)

# 清空数据读取列表

imgs_list = []

labels_list = []

# 如果剩余数据的数目小于BATCHSIZE,

# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch

if len(imgs_list) > 0:

yield np.array(imgs_list), np.array(labels_list)

return data_generator

#===========================================

#数据处理部分之后的代码,数据读取的部分调用Load_data函数

'''

# 定义多层全连接神经网络

class MNIST(paddle.nn.Layer):

def __init__(self):

super(MNIST, self).__init__()

# 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整

self.fc1 = Linear(in_features=784, out_features=10)

self.fc2 = Linear(in_features=10, out_features=10)

# 定义一层全连接输出层,输出维度是1

self.fc3 = Linear(in_features=10, out_features=1)

# 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数

def forward(self, inputs):

# inputs = paddle.reshape(inputs, [inputs.shape[0], 784])

outputs1 = self.fc1(inputs)

outputs1 = F.sigmoid(outputs1)

outputs2 = self.fc2(outputs1)

outputs2 = F.sigmoid(outputs2)

outputs_final = self.fc3(outputs2)

return outputs_final

'''

#===========================================

''' '''

#在卷积神经网络中,通常使用2×2大小的池化窗口,步幅也使用2,填充为0

#通过这种方式的池化,输出特征图的高和宽都减半,但通道数不会改变。

# 多层卷积神经网络实现

class MNIST(paddle.nn.Layer):

def __init__(self):

super(MNIST, self).__init__()

# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2

self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)

# 定义池化层,池化核的大小kernel_size为2,池化步长为2

self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)

# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2

self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)

# 定义池化层,池化核的大小kernel_size为2,池化步长为2

self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)

# 定义一层全连接层,输出维度是10

self.fc = Linear(in_features=980, out_features=10)

# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出

# 卷积层激活函数使用Relu,全连接层不使用激活函数

def forward(self, inputs):

x = self.conv1(inputs)

x = F.relu(x)

x = self.max_pool1(x)

x = self.conv2(x)

x = F.relu(x)

x = self.max_pool2(x)

x = paddle.reshape(x, [x.shape[0], -1])

x = self.fc(x)

return x

#===========================================

# 训练配置,并启动训练过程

#网络结构部分之后的代码,保持不变

def train(model):

#开启GPU #运行时间Cost time: 69.26997494697571

use_gpu = True

paddle.device.set_device('gpu:0') if use_gpu else paddle.device.set_device('cpu')

model.train()

#调用加载数据的函数,获得MNIST训练数据集

train_loader = load_data('train')

#优化模型参数

# 使用SGD优化器,learning_rate设置为0.01时loss下降明显最优 #cost time=705.9078650474548=11.75分钟

#opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) #运行时间cost time: 705.9078650474548

#opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters()) #运行时间Cost time: 705.5072021484375

#opt = paddle.optimizer.SGD(learning_rate=0.0001, parameters=model.parameters()) #运行时间Cost time: 708.7056725025177

#opt = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9, parameters=model.parameters()) #运行时间Cost time: 707.7317929267883

#opt = paddle.optimizer.Adagrad(learning_rate=0.01, parameters=model.parameters()) #运行时间Cost time: 756.807531118393

opt = paddle.optimizer.Adam(learning_rate=0.01, parameters=model.parameters()) #运行时间Cost time: 702.2813944816589

# 训练5轮

EPOCH_NUM = 10

# MNIST图像高和宽

IMG_ROWS, IMG_COLS = 28, 28

loss_list = []

for epoch_id in range(EPOCH_NUM):

for batch_id, data in enumerate(train_loader()):

#准备数据

images, labels = data

images = paddle.to_tensor(images)

labels = paddle.to_tensor(labels)

#前向计算的过程

predicts = model(images)

#计算损失,使用交叉熵损失函数,取一个批次样本损失的平均值

loss = F.cross_entropy(predicts, labels)

avg_loss = paddle.mean(loss)

#每训练200批次的数据,打印下当前Loss的情况

if batch_id % 200 == 0:

loss = avg_loss.numpy(); #[0]

loss_list.append(loss)

print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss))

#后向传播,更新参数的过程

avg_loss.backward()

# 最小化loss,更新参数

opt.step()

# 清除梯度

opt.clear_grad()

#保存模型参数

paddle.save(model.state_dict(), 'mnist_test.pdparams')

return loss_list

startTime=common.startTime()

model = MNIST()

loss_list = train(model)

common.runTime(startTime)

# 读取一张本地的样例图片,转变成模型输入的格式

def load_image(img_path):

# 从img_path中读取图像,并转为灰度图

im = Image.open(img_path).convert('L')

im = im.resize((28, 28), Image.LANCZOS)

im = np.array(im).reshape(1, 1, 28, 28).astype(np.float32)

# 图像归一化

im = 1.0 - im / 255.

return im

# 定义预测过程

model = MNIST()

params_file_path = 'mnist_test.pdparams'

img_path = './data/example_0.jpg'

# 加载模型参数

param_dict = paddle.load(params_file_path)

model.load_dict(param_dict)

# 灌入数据

model.eval()

tensor_img = load_image(img_path)

#模型反馈10个分类标签的对应概率

results = model(paddle.to_tensor(tensor_img))

#取概率最大的标签作为预测输出

lab = np.argsort(results.numpy())

print("本次预测的数字是: ", lab[0][-1])

安装后环境组件列表:

(rs) G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop>conda list

# packages in environment at C:\Users\Administrator\.conda\envs\rs:

#

# Name Version Build Channel

anyio 4.4.0 pyhd8ed1ab_0 conda-forge

astor 0.8.1 pyh9f0ad1d_0 conda-forge

babel 2.16.0 pypi_0 pypi

bce-python-sdk 0.9.19 pypi_0 pypi

beautifulsoup4 4.12.3 pypi_0 pypi

blinker 1.8.2 pypi_0 pypi

blosc 1.21.1 hcbbf2c4_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

boost-cpp 1.76.0 h54f0996_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

branca 0.7.2 pypi_0 pypi

brotli 1.1.0 hcfcfb64_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

brotli-bin 1.1.0 hcfcfb64_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

brotli-python 1.1.0 py39h99910a6_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

bzip2 1.0.8 h2466b09_7 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

ca-certificates 2024.7.4 h56e8100_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

cachetools 5.5.0 pypi_0 pypi

cairo 1.16.0 hd28d34b_1006 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

certifi 2024.7.4 pyhd8ed1ab_0 conda-forge

cffi 1.17.0 py39ha55e580_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

cfitsio 3.470 h0af3d06_7 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

chardet 5.2.0 pypi_0 pypi

charset-normalizer 3.3.2 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

click 8.1.7 pypi_0 pypi

cloudpickle 3.0.0 pypi_0 pypi

colorama 0.4.6 pypi_0 pypi

cudatoolkit 11.7.1 haa0b59a_13 conda-forge

cudnn 8.4.1.50 hf5f08ae_0 conda-forge

curl 8.1.2 h68f0423_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

cycler 0.12.1 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

cython 3.0.11 pypi_0 pypi

dask 2024.8.0 pypi_0 pypi

decorator 5.1.1 pyhd8ed1ab_0 conda-forge

earthengine-api 0.1.418 pypi_0 pypi

easydict 1.13 pypi_0 pypi

ee-extra 0.0.15 pypi_0 pypi

eemont 0.3.6 pypi_0 pypi

et-xmlfile 1.1.0 pypi_0 pypi

exceptiongroup 1.2.2 pyhd8ed1ab_0 conda-forge

expat 2.6.2 h63175ca_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

filelock 3.15.4 pypi_0 pypi

filterpy 1.4.5 py_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

flask 3.0.3 pypi_0 pypi

flask-babel 4.0.0 pypi_0 pypi

foliume 0.0.1 pypi_0 pypi

font-ttf-dejavu-sans-mono 2.37 hab24e00_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

font-ttf-inconsolata 3.000 h77eed37_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

font-ttf-source-code-pro 2.038 h77eed37_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

font-ttf-ubuntu 0.83 h77eed37_2 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

fontconfig 2.14.2 hbde0cde_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

fonts-conda-ecosystem 1 0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

fonts-conda-forge 1 0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

fonttools 4.53.1 py39ha55e580_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

freetype 2.12.1 hdaf720e_2 conda-forge

freexl 1.0.6 h67ca5e6_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

fsspec 2024.6.1 pypi_0 pypi

future 1.0.0 pypi_0 pypi

gdal 3.1.3 py39hda8168b_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

geographiclib 2.0 pypi_0 pypi

geojson 3.1.0 pypi_0 pypi

geopy 2.4.1 pypi_0 pypi

geos 3.8.1 he025d50_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

geotiff 1.6.0 h8884d1a_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

gettext 0.22.5 h5728263_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

gettext-tools 0.22.5 h5a7288d_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

glib 2.80.2 h0df6a38_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

glib-tools 2.80.2 h2f9d560_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

google-api-core 2.19.2 pypi_0 pypi

google-api-python-client 2.143.0 pypi_0 pypi

google-auth 2.34.0 pypi_0 pypi

google-auth-httplib2 0.2.0 pypi_0 pypi

google-cloud-core 2.4.1 pypi_0 pypi

google-cloud-storage 2.18.2 pypi_0 pypi

google-crc32c 1.5.0 pypi_0 pypi

google-resumable-media 2.7.2 pypi_0 pypi

googleapis-common-protos 1.65.0 pypi_0 pypi

gst-plugins-base 1.24.4 hba88be7_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

gstreamer 1.24.4 h5006eae_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

h11 0.14.0 pyhd8ed1ab_0 conda-forge

h2 4.1.0 pyhd8ed1ab_0 conda-forge

hdf4 4.2.15 h1b1b6ef_5 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

hdf5 1.10.6 nompi_h5268f04_1114 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

hpack 4.0.0 pyh9f0ad1d_0 conda-forge

httpcore 1.0.5 pyhd8ed1ab_0 conda-forge

httplib2 0.22.0 pypi_0 pypi

httpx 0.27.2 pyhd8ed1ab_0 conda-forge

hyperframe 6.0.1 pyhd8ed1ab_0 conda-forge

icu 67.1 h33f27b4_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

idna 3.8 pyhd8ed1ab_0 conda-forge

imageio 2.35.1 pypi_0 pypi

importlib-metadata 8.4.0 pypi_0 pypi

intel-openmp 2024.2.1 h57928b3_1083 conda-forge

itsdangerous 2.2.0 pypi_0 pypi

jinja2 3.1.4 pypi_0 pypi

joblib 1.4.2 pypi_0 pypi

jpeg 9e h8ffe710_2 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

kealib 1.4.14 h96bfa42_2 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

kiwisolver 1.4.5 py39h1f6ef14_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

krb5 1.20.1 h6609f42_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

lap 0.4.0 pypi_0 pypi

lazy-loader 0.4 pypi_0 pypi

lcms2 2.12 h2a16943_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

lerc 3.0 h0e60522_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libasprintf 0.22.5 h5728263_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libasprintf-devel 0.22.5 h5728263_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libblas 3.9.0 23_win64_mkl conda-forge

libbrotlicommon 1.1.0 hcfcfb64_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libbrotlidec 1.1.0 hcfcfb64_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libbrotlienc 1.1.0 hcfcfb64_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libcblas 3.9.0 23_win64_mkl conda-forge

libclang 10.0.1 default_hf44288c_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libclang13 16.0.0 default_h45d3cf4_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libcurl 8.1.2 h68f0423_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libdeflate 1.10 h8ffe710_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libexpat 2.6.2 h63175ca_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libffi 3.4.2 h8ffe710_5 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libgdal 3.1.3 h0e5aa5a_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libgettextpo 0.22.5 h5728263_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libgettextpo-devel 0.22.5 h5728263_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libglib 2.80.2 h0df6a38_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libhwloc 2.11.1 default_h8125262_1000 conda-forge

libiconv 1.17 hcfcfb64_2 conda-forge

libintl 0.22.5 h5728263_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libintl-devel 0.22.5 h5728263_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libjpeg-turbo 2.1.4 hcfcfb64_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libkml 1.3.0 hd45a9bc_1016 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

liblapack 3.9.0 23_win64_mkl conda-forge

liblapacke 3.9.0 23_win64_mkl https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libnetcdf 4.7.4 nompi_h3a9aa94_107 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libogg 1.3.5 h2466b09_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libopencv 4.4.0 py39_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libpng 1.6.43 h19919ed_0 conda-forge

libpq 12.15 hb652d5d_1 https://mirrors.ustc.edu.cn/anaconda/pkgs/main

librttopo 1.1.0 h6a4060e_4 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libspatialite 5.0.1 h37d8b57_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libsqlite 3.46.0 h2466b09_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libssh2 1.10.0 h680486a_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libtiff 4.2.0 h763f289_2 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libvorbis 1.3.7 h0e60522_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libwebp 1.4.0 h2466b09_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libwebp-base 1.4.0 hcfcfb64_0 conda-forge

libxcb 1.13 hcd874cb_1004 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libxml2 2.12.7 h283a6d9_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libzip 1.9.2 hfed4ece_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libzlib 1.2.13 h2466b09_6 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

libzlib-wapi 1.2.13 h2466b09_6 conda-forge

llvmlite 0.39.1 pypi_0 pypi

locket 1.0.0 pypi_0 pypi

lz4-c 1.9.3 h8ffe710_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

m2w64-gcc-libgfortran 5.3.0 6 conda-forge

m2w64-gcc-libs 5.3.0 7 conda-forge

m2w64-gcc-libs-core 5.3.0 7 conda-forge

m2w64-gmp 6.1.0 2 conda-forge

m2w64-libwinpthread-git 5.0.0.4634.697f757 2 conda-forge

markupsafe 2.1.5 pypi_0 pypi

matplotlib 3.5.0 py39hcbf5309_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

matplotlib-base 3.5.0 py39h581301d_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

mkl 2024.1.0 h66d3029_694 conda-forge

motmetrics 1.4.0 pypi_0 pypi

msys2-conda-epoch 20160418 1 conda-forge

munch 4.0.0 pypi_0 pypi

munkres 1.1.4 pyh9f0ad1d_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

natsort 8.4.0 pypi_0 pypi

networkx 3.2.1 pypi_0 pypi

numba 0.56.2 pypi_0 pypi

numpy 1.22.4 pypi_0 pypi

opencv 4.4.0 py39_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

opencv-contrib-python 3.4.18.65 pypi_0 pypi

opencv-python 4.6.0.66 pypi_0 pypi

openjpeg 2.3.1 h48faf41_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

openpyxl 3.1.5 pypi_0 pypi

openssl 1.1.1w hcfcfb64_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

opt_einsum 3.3.0 pyhc1e730c_2 conda-forge

packaging 24.1 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

paddlepaddle-gpu 2.6.1.post117 pypi_0 pypi

paddlers 1.0.0 pypi_0 pypi

paddleslim 0.0.0.dev0 pypi_0 pypi

pandas 2.0.3 pypi_0 pypi

partd 1.4.2 pypi_0 pypi

pcre 8.45 h0e60522_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pcre2 10.43 h17e33f8_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pillow 10.4.0 pypi_0 pypi

pip 24.2 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pixman 0.43.4 h63175ca_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

platformdirs 4.2.2 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

ply 3.11 pyhd8ed1ab_2 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pooch 1.8.2 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

poppler 0.89.0 h7c6e155_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

poppler-data 0.4.12 hd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

postgresql 12.15 hb652d5d_1 https://mirrors.ustc.edu.cn/anaconda/pkgs/main

proj 7.1.1 h7d85306_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

proto-plus 1.24.0 pypi_0 pypi

psutil 6.0.0 pypi_0 pypi

pthread-stubs 0.4 hcd874cb_1001 conda-forge

pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge

py-opencv 4.4.0 py39h9cd51e4_3 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pyasn1 0.6.0 pypi_0 pypi

pyasn1-modules 0.4.0 pypi_0 pypi

pycocotools 2.0.8 pypi_0 pypi

pycparser 2.22 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pycryptodome 3.20.0 pypi_0 pypi

pyparsing 3.1.4 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pyqt 5.12.3 py39hcbf5309_8 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pyqt-impl 5.12.3 py39h415ef7b_8 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pyqt5-sip 4.19.18 py39h415ef7b_8 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pyqtchart 5.12 py39h415ef7b_8 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pyqtwebengine 5.12.1 py39h415ef7b_8 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

pysocks 1.7.1 pyh0701188_6 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

python 3.9.15 h0269646_0_cpython https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

python-box 7.2.0 pypi_0 pypi

python-dateutil 2.9.0 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

python_abi 3.9 5_cp39 conda-forge

pytz 2024.1 pypi_0 pypi

pywavelets 1.6.0 pypi_0 pypi

pyyaml 6.0.2 pypi_0 pypi

pyzmq 26.2.0 pypi_0 pypi

qt 5.12.9 hb2cf2c5_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

rarfile 4.2 pypi_0 pypi

requests 2.32.3 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

rsa 4.9 pypi_0 pypi

scikit-image 0.21.0 pypi_0 pypi

scikit-learn 0.24.2 pypi_0 pypi

scipy 1.13.1 pypi_0 pypi

seaborn 0.13.2 pypi_0 pypi

setuptools 59.8.0 pypi_0 pypi

shapely 2.0.6 pypi_0 pypi

sip 6.7.12 py39h99910a6_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

six 1.16.0 pyh6c4a22f_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

snappy 1.1.10 hfb803bf_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

sniffio 1.3.1 pyhd8ed1ab_0 conda-forge

soupsieve 2.6 pypi_0 pypi

spyndex 0.6.0 pypi_0 pypi

sqlite 3.46.0 h2466b09_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

swig 4.2.1 pypi_0 pypi

tbb 2021.12.0 hc790b64_4 conda-forge

threadpoolctl 3.5.0 pypi_0 pypi

tifffile 2024.8.28 pypi_0 pypi

tiledb 2.1.6 hf84e3da_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

tk 8.6.13 h5226925_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

toml 0.10.2 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

tomli 2.0.1 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

toolz 0.12.1 pypi_0 pypi

tornado 6.4.1 py39ha55e580_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

tqdm 4.66.5 pypi_0 pypi

typing_extensions 4.12.2 pyha770c72_0 conda-forge

tzdata 2024.1 pypi_0 pypi

ucrt 10.0.22621.0 h57928b3_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

unicodedata2 15.1.0 py39ha55989b_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

uriparser 0.9.8 h5a68840_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

uritemplate 4.1.1 pypi_0 pypi

urllib3 2.2.2 pyhd8ed1ab_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

vc 14.3 h8a93ad2_20 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

vc14_runtime 14.40.33810 hcc2c482_20 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

visualdl 2.5.3 pypi_0 pypi

vs2015_runtime 14.40.33810 h3bf8584_20 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

werkzeug 3.0.4 pypi_0 pypi

wheel 0.44.0 pyhd8ed1ab_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

win_inet_pton 1.1.0 pyhd8ed1ab_6 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

xarray 2023.12.0 pypi_0 pypi

xerces-c 3.2.5 he0c23c2_1 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

xmltodict 0.13.0 pypi_0 pypi

xorg-libxau 1.0.11 hcd874cb_0 conda-forge

xorg-libxdmcp 1.1.3 hcd874cb_0 conda-forge

xz 5.2.6 h8d14728_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

zipp 3.20.1 pypi_0 pypi

zlib 1.2.13 h2466b09_6 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

zstandard 0.19.0 py39ha55989b_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

zstd 1.4.9 h6255e5f_0 https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge

(rs) G:\app2024\MyProject深度学习AI项目\rs_code\PaddleRS-develop>

本blog地址:https://blog.csdn.net/hsg77

相关推荐

花的成语
365bet投注技巧

花的成语

🕒 09-09 👁️ 6893
MySQL表中有多少列
正规365没有黑钱

MySQL表中有多少列

🕒 06-28 👁️ 5389